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Abstract: Active sonar operations in shallow waters are important both for autonomous underwater 

vehicles (AUV) with synthetic aperture sonar (SAS) or sidescan sonar, and for hull-mounted forward-

looking sonar. One of the challenges in shallow water operations is that the direct bottom return is 

often contaminated by other signal returns, either from scattering off both surface and bottom, or by 

direct surface backscattering. The contributions of different multipaths depend on the sensor depth, 

the vertical beam patterns and the environment. In this paper we present a method for adapting the 

sonar parameters to the environment in order to minimize the multipath contamination.  

The method is developed for AUV-mounted interferometric sidescan sonar systems, supporting depth 

estimation using two vertically displaced receiver arrays. The relative time delay of the direct signal 

and the multipath signals will differ between the two arrays. This allows for a measure on the degree 

of multipath contamination as a bi-product of the depth estimation. We use these measurements to 

calibrate a simulator which predicts the strength of both the direct signal return and each multipath 

return in the measured environment. The simulator is then rerun with different sonar settings in a 

search for minimum multipath contamination.  

The method is demonstrated on data recorded with the HISAS 1030 sonar on a HUGIN 1000 AUV 

developed by the Norwegian Defence Research Establishment (FFI) and Kongsberg Maritime. The 

best sensor depth and steering of the 16-element vertical transmitter array is suggested. This allows 

for in situ adaptation to the environment, and also provides validation of the suggested settings.  

Keywords: adaptive sonar, adaptive transmit beam, autonomy, sonar performance modelling, 

AUV, sidescan sonar 



 

1. INTRODUCTION 

We investigate a concept for automatic adaptation of sonar 

settings to the environment by calibrating a model to a 

measurement and simulating the performance with other sonar 

settings. The sonar system consists of an interferometric HISAS 

1030 sonar on a HUGIN autonomous underwater vehicle 

(AUV), see Figure 1.  

When a sidescan sonar is used in shallow water, i.e. where 

the depth is less than half the maximum sonar range, multiple 

reflections off the sea floor and sea surface may interfere with 

the direct signal return from the sea floor [1]. An example of 

how severe such multipath induced image degradation can be is shown in Figure 2. Without a large 

vertical array, we cannot use beam forming to prevent this. In very shallow water, the multipath's 

angle of arrival may be very similar to the direct signal return, which would require a prohibitively 

large vertical array to create a narrow beam. This, in turn, would require detailed a priori knowledge 

of the scene bathymetry in order to find the correct direction of arrival. Instead, we propose to adapt 

the transmit beam in order to limit the generation and strength of the multipath signals. For this 

purpose the HISAS 1030 has a 16-element vertical array transmitter, which creates a defocused beam 

with controllable width and direction.  

 
Figure 1: A HUGIN 1000 AUV. 

 
 

 
Figure 2: Example of a seabed on the coast of Horten, Norway, where we have imaged the same scene 

twice with the same sonar settings, but on different dives about six days apart. Vertical red lines mark 

the range every 50 meters. The upper image shows severe degradation, primarily caused by multipath, 

and features low bathymetric coherence compared to the lower image. The AUV depth is 2.8 meters, 

and the total sea floor depth is 9.8 meters. The upper image is collected with winds of about 3 m/s from 

south-southwest, while the lower image was collected with winds of about 10 m/s from south, reported 

from the nearest meteorological observation station. 



 

Our concept for the environmentally adaptive sonar process is illustrated in Figure 3. First, a 

measurement is collected and processed for sidescan bathymetry and bathymetric coherence [2]. The 

coherence is used to estimate a measured signal to noise ratio (SNR). The bottom type and surface 

state is estimated by fitting a simulated SNR from a sonar performance model to the measured SNR. 

With these environment parameters resolved, the sonar performance model is used to simulate 

performance using other sonar parameters, and even other measurement geometries, like different 

vehicle altitudes. We use the swath width to compare new solutions to the measurement, defined here 

as the length of the largest continuous range-segment with SNR larger than 0 dB. Finally, if the best 

swath width simulated with new settings is an improvement, we apply these sonar settings for the next 

measurement.  

 

 
 

Figure 3: Flowchart describing the adaptive sonar process. A sonar performance model is used both 

for estimating the ocean environment and for simulating the SNR with various sonar parameters.  

2. SONAR PERFORMANCE MODEL 

We need a sonar performance model to provide parameters that describe the environment, and to 

predict the sonar performance with different sonar settings. For this purpose we have used the 

modeling software SMURF [3], developed by the Norwegian Defence Research Establishment (FFI).  

The SMURF model is a 2-dimensional (depth and range) ray tracing model for sonar performance, 

particularly developed for shallow water. In order to simulate the path of sound in the water, many 

different aspects of how pressure waves travel through viscous media need to be considered. The most 

significant factors are refraction, multiple specular and diffuse reflections (scattering) off the sea floor 

and surface, and attenuation and geometrical spreading in the water. In addition, the beam patterns of 

the transmit and receive antenna arrays are significant.  

3. METHOD 

The result of the simulation in the sonar performance model SMURF is a simulated SNR. In order 

to resolve the environmental parameters, i.e. the bottom type of the sea floor and the roughness of the 

sea surface, we tune these and compare the simulated SNR to the measurement until we find a good fit 

between the simulated and measured SNRs.  

The measured SNR is estimated from the bathymetric coherence, which is the normalized cross-

correlation of the two coregistered images from the interferometric HISAS 1030 sonar setup [1,4]. 

High coherence means more coherent signal energy, which will be the direct signal return since the 

angle of arrival matches between the two coregistered images. Low coherence means more noise, 

which comprise the multipath returns since they don’t have the same angle of arrival as the direct 

signal return, and thus will not be coherent in the coregistered images.  

  



 

The bathymetric coherence, |𝛾|, of the two coregistered images is calculated by finding the peak 

value in the coherence function 𝛾(𝜏) 

 

|𝛾| = max𝜏 |𝛾(𝜏)|, 
 

where 𝜏 is the time lag applied to one of the signals in the coherence function. This is to say that the 

phase shift which results in the maximum total coherence between the two measured signals is the 

shift that makes them coregistered. This coherence has a known bias towards higher values because 

the correlation is performed with data series of a finite number of samples. An expression for the 

variance exists, and shows that the bias increases with decreasing number of samples [4,5].  

An estimate of the SNR in a sonar image can be expressed by the coherence as [4] 

 

𝑆𝑁𝑅 =  
|𝛾|

1−|𝛾|
. 

 

In shallow water, where the main cause of signal degradation is multipath, this SNR estimate is a 

good measure of signal to multipath ratio [3].  

In order to search for new and improved sonar parameters, the model must be calibrated to match 

the current environment. This calibration is a search for fitting environmental parameters, i.e. bottom 

type and sea state. The sonar settings and geometry are input, as well as the measured sound speed 

profile and the measured sidescan bathymetry. Then, the two environmental parameters are varied to 

simulate SNR results with different combinations of bottom types and sea states. The measured SNR 

estimate is then compared to these simulated SNRs with varying environmental parameters. The best 

fit in the least squares sense between the measured and simulated SNRs is selected. This is 

implemented by discretizing the sea states and performing a greedy search algorithm in the bottom 

type dimension, and selecting the best result found.  

Using the now calibrated model, we investigate new settings by performing a search for improved 

simulated performance by using the sonar settings as variable parameters. We test both a brute force 

search, trying all solutions for analytic purposes, and a hill climbing algorithm, for shorter runtime.  

The brute force search was performed for beam 

widths from 10 to 80 degrees in steps of 5 degrees, 

and electronic beam steering of -60 to 40 degrees in 

steps of 5 degrees, positive down from the horizon. 

In addition to the electronic steering, the sonar array 

is mounted with a mechanical direction of 22 

degrees down from the horizon.  

The hill climbing algorithm was allowed to use 

beam widths from 10 to 80 degrees, electronic beam 

steering of -50 to 20 degrees, and altitudes from 

minimum 3 meters above the sea floor up to 

maximum 80 meters above the sea floor, though 

never less than 2 meters depth. The reason for 

slightly reducing the set of available steering angles 

compared to the brute force search was simply that 

the extreme values direct the beam too far away 

from the scene, and thus only contribute to 

increasing the runtime of the algorithm.  

 
Figure 4 Scatter plot showing brute force solutions 

for the deep water. Lower and upper swath limits 

are shown on the axes, i.e. the outer limits of 

where we can typically make a good sonar image.  



 

In order to experimentally verify our method, we have collected sonar data using various sonar 

settings and vehicle altitudes. These data are collected in deep water, at about 196 meters, and in 

shallow water, at about 10 meters. For one of these measurements, we calibrate the SMURF model 

and use it to simulate the performance with the other settings for which we have measurements. This 

process is then repeated for all the measurements. Finally, the results and mean results are plotted, 

together with the actual measured performance, to illustrate the validity and accuracy of our method.  

 

4. RESULTS 

With the brute force results we investigate the 

simulated performance of various sonar settings 

for the two different environments.  

For the deep water environment, the plot in 

Figure 4 shows a scatter plot of the achieved 

lower and upper limits, and the mean swath SNR-

level. The distinct vertical groupings reflect the 

lower swath limits, which are largely the same as 

the vehicle altitude. This is due to the vertical 

beam pattern of the receiver, which limits the 

minimum range to that of about 45 degrees down 

from the horizon. There are many solutions which 

result in good swath widths. There is also a weak 

trend indicating increasing SNR with decreasing 

swath width, which is expected as more energy is 

focused in a smaller area.  

The plot in Figure 5 shows the swath width, 

i.e. the difference between the upper and lower 

limits, as a function of beam direction and beam 

width of the transmit beam, for a given altitude of 

46 meters. If the beam is directed too high or too 

low the swath width suffers, but good results are 

achieved for many combinations of directions and 

beam widths. The results were largely the same 

for different altitudes, up until about 100 meters 

altitude, where the surface return arrives at the 

same time as the bottom return, and down to 

about 15 meters altitude, where the grazing angles 

gets very low at large range, and thus give less 

backscatter.  

Figure 6 shows the model verification, which 

has each of the 30 measurements with different 

sonar settings as a function of the lower and upper 

swath limits on the range-axis. We can see that the 

measured swath limits in red match well with the 

simulated results, based on each of the other 

Figure 5: Simulated swath width for measured 

deep water environment (about 196 meters depth) 

for vehicle depth 150 meters, which was the best 

result. Comparable, good results are achieved for a 

wide vehicle depth interval.  

Figure 7: Scatter plot showing brute force 

solutions for the shallow water. Lower and upper 

swath limits are shown on the axes, i.e. the outer 

limits of where we can typically make a good 

sonar image.  



 

measurements. Each simulation result, i.e. the simulation of all the other settings based on the 

calibration from a single measurement, is added in light gray for an indication of the variance of the 

simulations.  

For the shallow water environment, Figure 7 shows a scatter plot comparable to that of the deep 

water environment in Figure 4. The group of large swath widths is not as large in shallow water, and 

there is much to be gained from picking the right solution. Notice that we see the same distinct groups 

of lower swath limits, which correspond to the altitudes. Here it is more prominent that smaller swath 

widths allow for larger SNRs.  

Figure 8 shows the simulated swath width for vehicle depths of 2, 4, 6 and 8 meters. The best 

results are achieved close to the surface with 8 meters altitude, or 2 meters depth, and a narrow beam 

directed slightly down from the horizon.  

Figure 9 shows a model verification plot for the shallow water environment. The variance is larger 

than it was for the deep water environment, but most of the simulations are close to the measurements. 

The simulations that are very far off all originate from the same measurements, and is the result of 

outlier (and presumably wrong) bottom types and sea states found when calibrating the model.  

Running a simple, unrefined implementation of the suggested, automated algorithm using a basic 

hill climbing search, we successfully found settings which are reasonable compared to the brute force 

solutions in about 97% of the cases for the deep water environment, and 85% of the cases for the 

shallow water environment. The runtime on a simple desktop computer for the deep water 

environment was lower than 5 seconds, while for the shallow water environment the average runtime 

was 34 seconds.  

Figure 6: Model verification plot for the deep water measurements. It shows lower and upper limits 

(range-axis) for each measurement (horizontal axis). The red lines indicate the measured swath width 

for each measurement, while the blue lines indicate the average simulated swath width for each 

measurement based on calibration from each of the other measurements. The grey lines are the 

simulated results based on each of the measurements, indicating the variance visually.  

 
Figure 9: Model verification plot for the shallow water measurements.  



 

5. DISCUSSION AND CONCLUSION 

Comparing the brute force search results based on the measurements from the deep and shallow 

water environments, we observe that the number of beam patterns with good performance is much 

smaller in shallow water with multipath presence. Thus, a standardized, fixed sonar setting may work 

well in deep water, even with changing environmental conditions, like sound speed profile and bottom 

type. In shallow water, however, the settings must be more precise and based on the current 

environmental conditions. The accuracy required for good performance in shallow water also 

increases the requirements on the simulation model. This means that it is important to accurately 

model the real antenna beam patterns, the sound velocity profile and the rest of the ocean 

environment.  

 
 

Figure 8: Simulated swath width for measured shallow water environment (about 10 meters depth) 

for vehicle depths 2, 4, 6 and 8 meters. In this case, the best swath widths are achieved with the 

vehicle close to the surface.   



 

We performed a model verification experiment, where we collected sonar data with different sonar 

settings in two different ocean environments. The results have some variance, particularly in the 

shallow water case, which is the most challenging one to simulate because of multipath presence. 

However, the simulations from each measurement seem to be relatively correct, meaning that the best 

measurement is also the best simulated result based calibration from any other measurement. This is a 

desirable quality when we want to be able to pick the best sonar settings, as it is sufficient to find 

improved settings, without necessarily predicting the actual performance with high accuracy.  

Several challenges in adaptive sidescan sonar applications remain. Examples include rapidly 

adapting to very rough bathymetry, adapting to sloping sea floors, and imaging towards the shoreline, 

or even very steep, near-vertical bathymetry often found in fjords. We intend to address some of these 

challenges with further development of the adaptive sonar concept.  

The quality of the sonar image is, of course, affected by more than the swath width given by the 

SNR [1]. More advanced prediction and estimation of sonar quality [6] will improve the robustness of 

this concept, and could also be expanded to autonomously improving the image quality.  

The hill climber algorithm for adaptively improving sonar performance will be implemented in a 

HUGIN AUV ultimo 2013. This will be the real proof of concept for this method, as changing ocean 

environments require the adaptation to be performed in situ for the simulation to still be valid. 

Additionally, we will couple the result of this adaptation with automated mission planning and 

adaptive line spacing. This can improve range and area coverage rate autonomously, i.e. without 

involving the AUV operator.  
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